Power analyzers and Energy Meters Power Analyzer Type WM14 DIN "Advanced version"

- Protection degree (front): IP40
- 2 digital outputs
- 16 freely configurable alarms with OR/AND logic linkable with up to 2 digital outputs
- RS422/485 serial output (MODBUS-RTU), iFIX SCADA compatibility
- Harmonic analysis (FFT) up to the 15th harmonic (current and voltage)
 - Four quadrant power measurement

Instantaneous variables read-out: 3 DGT

• System variables: V_{LL}, V_{LN}, An, A_{dmd max}, VA, VA_{dmd}, VA_{dmd max}, W, W_{dmd}, W_{dmd max}, var, PF, Hz, ASY

Amax, Admd, VA, W, Wdmd, Wmax, var, PF, PFmin

Class 1 (kWh), Class 2 (kvarh)
Accuracy ±0.5 F.S. (current/voltage)

• Energies readout: 8+1 DGT

Power Analyzer

• Energy measurements: total and partial kWh and kvarh

• Single phase variables: VLL, VLN, VLN min, VLN max, A, Amin,

- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Universal power supply: 90 to 260 VAC/DC, 18 to 60 VAC/DC
- Front dimensions: 107,8x90mm (6 DIN modules)
- Voltage asymmetry, phase sequence, phase loss control

Product Description

3-phase advanced power analyzer with integrated programming key-pad. Particularly recommended for the measurement of the main electrical variables. Housing for DIN-RAIL mounting, with RS485 communication port or pulse and/or alarm outputs.

How to order WM14-DIN AV5 3 H R2 S1 AX

	_
Model ———	L
Range code ——	
System ———	
Power supply —	
Output 1	
•	
Option	
Power supply — Output 1 — Output 2 —	

Type Selection

Range codes	Syst	em	Outp	ut 1	Outp	ut 2
AV5: 380/660V _{L-L} /1/5(6)AAC V _{L-N} : 185 V to 460 V V _{L-L} : 320 V to 800 V AV6: 120/208V _{L-L} /1/5(6)AAC V _{L-N} : 45 V to 145 V	3 :	1, 2 or 3 phase, balanced/unbalanced load, with or without neutral	R2: 02:	2-relay outputs 2-open collector outputs	XX: S1:	None RS485/RS422 port
V_{L-L} : 78 V to 250 V Phase current: 0.03A to 6A	Power supply				Optic	ons
Neutral current: 0.09A to 6A	L: H:	18 to 60 VAC/VDC 90 to 260 VAC/VDC			AX:	advanced functions

Input specifications

Rated inputs Current Voltage	System type: 3 3 (Shunts) 4	Phase-neutral voltage Active and Apparent power,	±(0.5% FS + 1 DGT) 0.25 to 6A: ±(1% FS +1DGT); 0.03A to 0.25A: ±(1% FS
Accuracy (display, RS485)	with CT=1 and VT=1 AV5:		+5DGT)
(@25°C ±5°C, R.H. ≤60%)	1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL	Reactive power	0.25 to 6A: ±(2% FS +1DGT); 0.03A to 0.25A: ±(2% FS +5DGT)
Current	0.25 to 6A: ±(0.5% FS +1DGT) 0.03A to 0.25A: ±(0.5% FS +7DGT)	Active energy Reactive energy	Class 1 (I start up: 30mA) Class 2 (I start up: 30mA)
Neutral current	0.25 to 6A: ±(1.5% FS +1DGT) 0.09A to 0.25A: ±(1.5% FS +7DGT)	Frequency Harmonic distortion	± 0.1 Hz (48 to 62Hz) $\pm 3\%$ F.S. (up to 15 th harmonic)
Phase-phase voltage	±(1.5% FS +1 DGT)		(F.S.: 100%)

Input specifications (cont.)

Additional errors Humidity Temperature drift	≤0.3% FS, 60% to 90% RH ≤200ppm/°C	Measurements Type	Current, voltage, power, power factor, frequency TRMS measurement of distorted waves.	
Sampling rate	1600 samples/s @ 50Hz 1900 samples/s @ 60Hz	Coupling type Crest factor	Direct < 3, max 10A peak	
Display refresh time	200ms (FFT off) 500ms (FFT on)	Input impedance 380/660V _{L-L} (AV5)	1.6 MΩ ±5%	
Display		120/208V _{L-L} (AV6)	1.6 MΩ ±5%	
Туре	LED, 9mm	Current	≤ 0.02Ω	
Read-out for instant. var.	3x3 DGT	Frequency	48 to 62 Hz	
Read-out for energies Read-out for hour counter	3+3+3 DGT (Max indication: 999 999 99.9) 1+3+3 DGT (Max. indication: 9 999 9.99)	Overload protection Continuous: voltage/current For 500ms: voltage/current	(max values) AV5: 460V _{LN} , 800V _{LL} /6A AV6: 145V _{LN} , 250V _{LL} /6A AV5: 800V _{LN} , 1380V _{LL} /36A AV6: 240V _{LN} , 416V _{LL} /36A	

Output Specifications

Digital outputs Pulse type Number of outputs Type Alarm type Number of outputs Alarm modes	Up to 2 Programmable from 0.01 to 500 pulses per kWh/kvarh Pulse duration ≥ 100ms < 120msec (ON), ≥ 100ms (OFF) according to EN62053-31 Up to 2, independent Up alarm, down alarm, in window alarm, out window alarm. Start-up deactiva- tion function available for all kinds of alarm. All of them connectable on all	Relay outputs Purpose Type Insulation RS422/RS485 Connections	For alarm outputs or for pulse outputs Relay, SPST type AC 1-5A @ 250VAC DC 12-5A @ 24VDC AC 15-1.5A @ 24VDC AC 15-1.5A @ 24VDC 4000 V_{RMS} output to measuring input, 4000 V_{RMS} output to supply input. (on request) Multidrop bidirectional (static and dynamic variables) 2 or 4 wires, max. distance
Set-point adjustment Hysteresis On-time delay Output status Min. response time Note	variables (see the table "List of the variables that can be connected to") From 0 to 100% of the display scale From 0 to full scale 0 to 255s Selectable; normally de-energized and normally energized ≤400ms, filters excluded, With FFT off; ≤1s, with FFT on. Set-point on-time delay: "0 s" The 2 digital outputs can also work as pulse output and alarm output.	Addresses Protocol Data (bidirectional) Dynamic (reading only) Static (writing only) Data format Baud-rate Insulation	1200m, termination directly on the instrument From 1 to 255, selectable MODBUS/JBUS (RTU) System and phase variables: see table "List of variables" All the configuration parameters. 1 start bit, 8 data bit, no parity,1 stop bit 4800, 9600,19200, 38400bits/s By means of optocouplers, 4000 V _{RMS} output to measuring input 4000 V _{RMS} output to supply input
Static outputs Purpose Signal Insulation	For pulse outputs or for alarm outputs V_{ON} 1.2 VDC/ max. 100 mA V_{OFF} 30 VDC max. By means of optocuplers, 4000 V_{RMS} output to measuring inputs, 4000 V_{RMS} output to power supply input.		

Software functions

Password 1 st level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no	Alarms Working mode	"OR" or "AND" or "OR+AND" functions (see "Alarm parameter and logic"
2 nd level	protection Password from 1 to 999, all data are protected		page). Freely programmable on up to 16 total alarms
System selection			(out1+out2). The alarms
System 3, unbalanced System 3, balanced	3-phase (3-wire, 4-wire) 3-phase ARON 2-phase (3-wire) 3-phase (3-wire, 4-wire)		can be connected to any variables available in the table "List of the variables that can be connected to"
	3-phase (3-wire) "1CT+1VT" 3-phase (3-wire) "1CT+3VT" 1-phase (2-wire)	Reset	By means of keypad: The following kinds of reset are available:
Transformer ratio			- all values stored as "dmd
CT VT/PT	1 to 60000 1.0 to 6000.0		max": Idmd max, Wdmd max, VAdmd max
Filter			- all values stored as
Operating range	0 to 100% of the input display scale		"max": $A_1, A_2, A_3, WL_1,$
Filtering coefficient Filter action	1 to 32 Measurements, alarms, serial output (fundamental variables: V, A, W and their derived ones).		$(1, A_2, A_3, WL_1, WL_2, WL_3, WL_1, WL_2, WL_3, WL_1, VL_2, VL_3, and as "Min": PF_1, PF_2, PF_3, A_1, A_2, A_3, VL_1, VL_2, VL_3.- Only the kWh and kvarh$
Displaying	Up to 3 variables per page See table "Display pages"		 Both the kWh and kvarh total and partial counters the hour counter.

Power Supply Specifications

AC/DC voltage

90 to 260VAC/DC 16 to 60VAC/DC Power consumption

AC: 6 VA DC: 3.5 W

General Specifications

Operating temperature	0° to +50°C (32° to 122°F) (RH < 90% non condensing)	Immunity	EN61000-6-2 industrial environment.
Storage	-10° to +60°C (14° to 140°F)	Pulse voltage (1.2/50µs)	EN61000-4-5
temperature	(RH < 90% non condensing)	Safety standards	IEC60664, IEC61010-1
Overvoltage category	Cat. III (IEC 60664, EN60664)		EN60664, EN61010-1
Insulation (for 1 minute)	4kVAC _{RMS}	Approvals	CE
	between measuring inputs and power supply.	Connections 5(6) A Max cable cross sect. area	Screw-type 2.5 mm ²
4kVAC/DC @ I <3mA between measuring inputs		Housing	
	and RS485. 4kVAC _{RMS} between power supply and	Dimensions (WxHxD) Material	107.80x90x64,5 mm ABS self-extinguishing: UL 94 V-0
RS485.		Mounting	DIN-RAIL
Dielectric strength EMC	4kVAC _{RMS} (for 1 min)	Protection degree	Front: IP40 (standard) Connections: IP20
Emissions	EN61000-6-3 residential environment, commerce and light industry	Weight	Approx. 400 g (pack. incl.)

Insulation between inputs and outputs

	Measuring Inputs V	Measuring Inputs A	Relay outputs	Open collector outputs	Communication Port	Power Supply 90-260VAC/DC	Power Supply 18-60VAC/DC
Measuring Inputs V	-	-	4kV	4kV	2.5kV	4kV	4kV
Measuring Inputs A	-	-	4kV	4kV	2.5kV	4kV	4kV
Relay outputs	4kV	4kV	-	-	2.5kV	4kV	4kV
Open col. out- puts	4kV	4kV	-	-	2.5kV	4kV	4kV
Communication Port	2.5kV	2.5kV	-	-	-	4kV	4kV
90-260VAC/DC	4kV	4kV	4kV	4kV	4kV	-	-
18-60VAC/DC	4kV	4kV	4kV	4kV	4kV	-	-

NOTE: In case of fault of first insulation the current from the measuring inputs to the ground is lower than 2 mA.

List of the variables that can be connected to:

• RS485/RS422 communication port

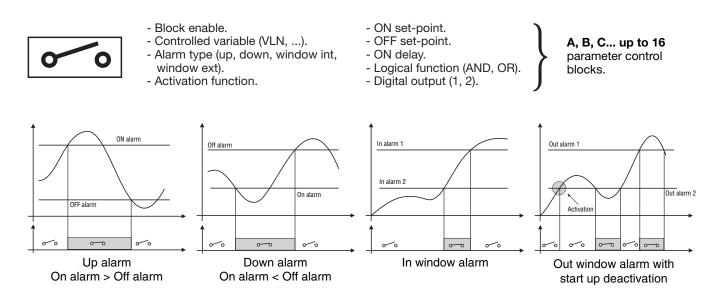
Alarm outputs ("max / min" variable, "energies" and "hour counter" excluded)
Pulse outputs (only "energies")

No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3 ph. 3-wire bal. sys.	3 ph. 3-wire unbal. sys.	Notes
1	V L1	х	x	x	x	0	0	◆ ★
2	V L2	0	х	х	х	0	0	◆ ★
3	V L3	0	0	х	х	0	0	◆★
4	V L-N sys	0	х	х	х	0	0	Sys = system
5	V L1-2	0	х	х	х	х	х	
6	V L2-3	0	х	х	х	х	х	
7	V L3-1	0	0	х	х	х	x	
8	V L-L sys	0	х	x	х	х	х	Sys = system
9	A L1	х	х	х	х	х	x	◆ ★
10	A L2	0	х	х	х	Х	х	◆ ★
<u>11</u>	A L3	0	0	х	х	Х	х	◆ ★
12	An	0	х	х	х	Х	x	
13	W L1	х	х	х	х	0	0	•
<u>14</u>	W L2	0	х	х	х	0	0	•
16	W L3	0	0	х	х	0	0	•
17	W sys	0	х	x	х	х	x	Sys = system
18	var L1	x	х	х	х	0	0	
19	var L2	0	х	х	х	0	0	
20	var L3	0	0	х	х	0	0	
21	var sys	0	х	х	х	х	x	Sys = system
22	VA L1	х	х	х	х	0	0	
23	VA L2	0	х	х	х	0	0	
24	VA L3	0	0	х	х	0	0	
25	VA sys	0	х	x	х	х	x	Sys = system
26	PF L1	х	х	х	х	0	0	*
27	PF L2	0	х	х	х	0	0	*
28	PF L3	0	0	х	х	0	0	*
29	PF sys	0	X	х	х	Х	х	Sys = system
30	Hz	x	х	х	х	Х	х	
<u>31</u>	Phase seq.	0	х	х	х	Х	х	
32	ASY L-N	0	х	х	х	Х	х	
33	ASY L-L	0	х	х	х	х	x	
<u>34</u>	Phase loss	0	х	х	х	х	х	
35	VA sys dmd	x	х	х	х	Х	х	Sys = system ♦ O
36	W sys dmd	х	х	х	х	Х	х	Sys = system ♦ O
37	A L1 dmd	х	х	х	x	х	x	•
38	A L2 dmd	0	х	х	х	х	х	•
39	A L3 dmd	0	0	х	х	Х	х	•
40	AL dmd	х	х	х	х	Х	х	
41	A L1 THD	x	х	х	х	Х	х	
42	A L2 THD	0	х	х	х	х	x	
43	A L3 THD	0	0	x	x	х	х	
44	V L1 THD	х	х	x	х	х	x	
45	V L2 THD	0	х	х	х	х	x	
46	V L3 THD	0	0	x	x	x	x	
47	kWh	х	х	х	х	х	x	Total and partial
48	kvarh	х	х	х	х	х	x	Total and partial
49	hours	x	х	х	х	х	х	

(x) = available(o) = not available

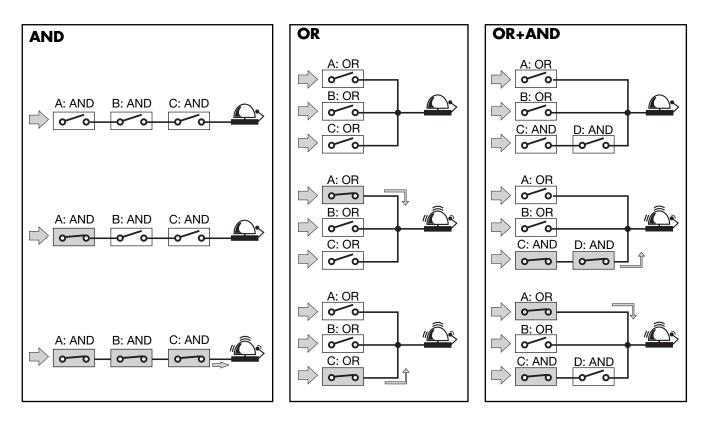
(**•**) These variables are available also as MAX detection and data storage (on EEPROM at power down).

(★) These variables are available also as MIN detection and data storage (on EEPROM at power down).


(**D**) Highest value among the 3-phase.

(O) Alarm available only on the consumed power (+).

Specifications are subject to change without notice WM14-DINADS010905



Alarm parameters and logic

Note: any alarm working mode can be linked to the "Start-up deactivation" function which disables only the first alarm after power on of the instrument.

AND/OR logical alarm examples:

Display pages

No	1 st variable	2 nd variable	3 rd variable	Note
1	%	"ASY"	"L N"	Phase to neutral asymmetry
2	V L1	V L2	V L3	
3	V LN sys		PF sys	Sys = system
4	V LL sys		PF sys	Decimal point blinking on the right of the display
5	V L1 2	V L2 3	V L3 1	Decimal point blinking on the right of the display
6	%	"ASY"	"L L"	Phase to phase asymmetry
7	"PH"	"SEq"	123/132	Phase sequence
8	A L1	A L2	A L3	
9	A dmd L1	A dmd L2	A dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
10	An	"n"	Hz	An= neutral current
11	W L1	W L2	W L3	
12	W dmd L1	W dmd L2	W dmd L3	dmd = demand (integration time selectable from 1 to 30 minutes)
13	PF L1	PF L2	PF L3	
14	var L1	var L2	var L3	
15	VA L1	VA L2	VA L3	
16	VA sys	W sys	var sys	
17	VA dmd sys	W dmd sys	Hz	dmd = demand (integration time selectable from 1 to 30 minutes)
18	V max L1	V max L2	V max L3	Max value of phase to neutral voltage
19	V min L1	V min L2	V min L3	Min value of phase to neutral voltage
20	A max L1	A max L2	A max L3	Max value of current
21	A min L1	A min L2	A min L3	Min value of current
22	W max L1	W max L2	W max L3	Max value of W
23	PF min L1	PF min L2	PF min L3	Min value of PF
24	VA dmd sys max	W dmd sys max	"H"	Max system dmd
25	A dmd max		"H"	Highest value among the 3-phase
26	V L1 THD	V L2 THD	V L3 THD	
27	A L1 THD	A L2 THD	A L3 THD	
28	h (MSD)	h	h (LSD)	Hour counter
29	kvarh (MSD)	kvarh	kvarh (LSD)	Partial counter
30	kWh (MSD)	kWh	kWh (LSD)	Partial counter
31	kvarh (MSD)	kvarh	kvarh (LSD)	Total counter
32	kWh (MSD)	kWh	kWh (LSD)	Total counter

MSD: most significant digit LSD: least significant digit

1) Example of kWh visualization:

This example is showing 15 933 453.7 kWh

2) Example of kvarh visualization: This example is showing 3 553 944.9 kvarh

CARLO GAVAZZI

Waveform of the signals that can be measured

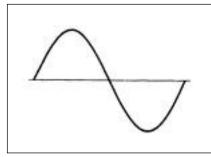


Figure A Sine wave, undistorted 100% Fundamental content Harmonic content 0% 1.1107 | A | $A_{rms} =$

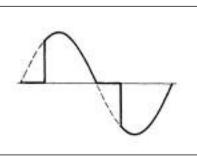


Figure B Sine wave, indented Fundamental content 10...100% Harmonic content 0...90% Frequency spectrum: 3rd to 16th harmonic Additional error: <1% FS

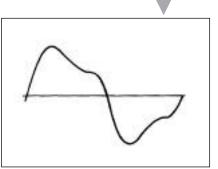
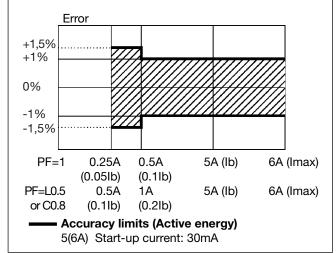
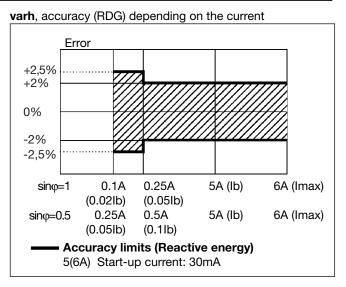




Figure C Sine wave, distorted Fundamental content 70...90% Harmonic content 10...30% Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5% FS

Accuracy

Wh, accuracy (RDG) depending on the current

Used calculation formulas

Phase variables

Instantaneous effective voltage

 $V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{i}^{n} (V_{1N})_{i}^{2}}$ Instantaneous active power

 $W_1 = \frac{1}{n} \cdot \sum_{i=1}^{n} (V_{1N})_i \cdot (A_1)_i$ Instantaneous power factor

 $cos\phi_1 = \frac{W_1}{VA_1}$ Instantaneous effective current

 $A_1 = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (A_i)_i^2}$ Instantaneous apparent power

 $VA_1 = V_{1N} \cdot A_1$ Instantaneous reactive power

$$VAr_1 = \sqrt{(VA_1)^2 - (W_1)^2}$$

System variables

Equivalent three-phase voltage $V_{\Sigma} = \frac{V_{12} + V_{23} + V_{31}}{3}$

Voltage asymmetry $ASY_{LL} = \frac{(V_{LL \max} - V_{LL \min})}{V_{LL} \Sigma}$ $ASY_{LN} = \frac{(V_{LN \max} - V_{LN \min})}{V_{LN} \Sigma}$ Three-phase reactive power

 $VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$

Neutral current $An = \overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$

Three-phase active power

$$W_{\Sigma} = W_1 + W_2 + W_3$$

Three-phase apparent power

$$VA_{\Sigma} = \sqrt{W_{\Sigma}^{2} + VAr_{\Sigma}^{2}}$$

Three-phase power factor (TPF) $\cos \phi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$

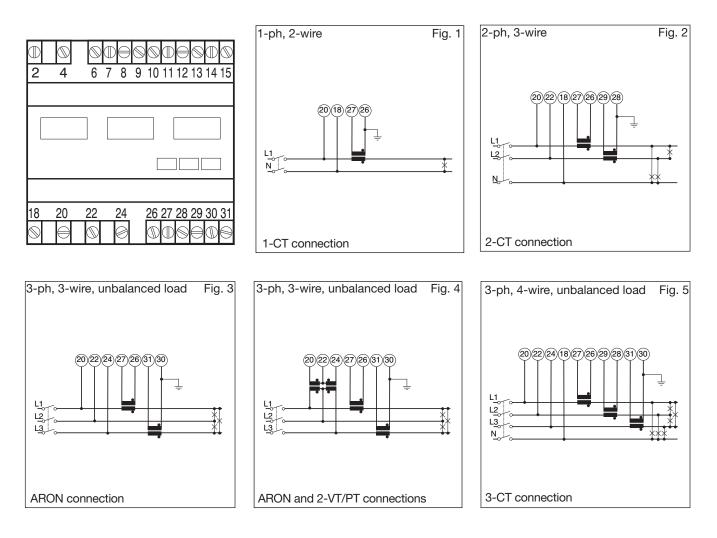
Energy metering

$$kWh_i = \int_{t_1}^{t_2} P_i(t) dt \cong \Delta t \sum_{n_1}^{n_2} P_{n_2}$$

$$k \operatorname{Varh}_{i} = \int_{t_{1}}^{t_{2}} Q_{i}(t) dt \cong \Delta t \sum_{n_{1}}^{n_{2}} Q_{n,i}$$

Where:

i= considered phase (L1, L2 or L3) **P**= active power; **Q**= reactive power; t_1, t_2 =starting and ending time points of consumption recording; n = time unit; Δt = time interval between two successive power consumptions; n₁, n₂ = starting and ending discrete time points of consumption recording

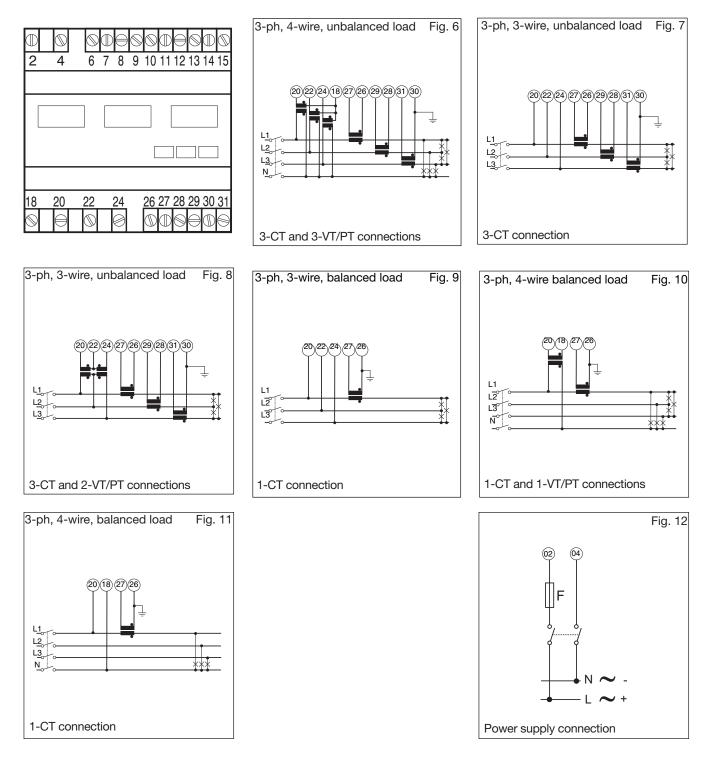


Harmonic Analysis

Analysis principle	FFT	Display of harmonic values	THD %
Harmonic measurement Current Voltage	Up to 15th harmonic Up to 15th harmonic	Others	The harmonic distortion can be measured in both 3-wire or 4-wire systems.
Type of harmonics	THD (VL1) THD (VL2) THD (VL3) THD (AL1) THD (AL2) THD (AL3)		

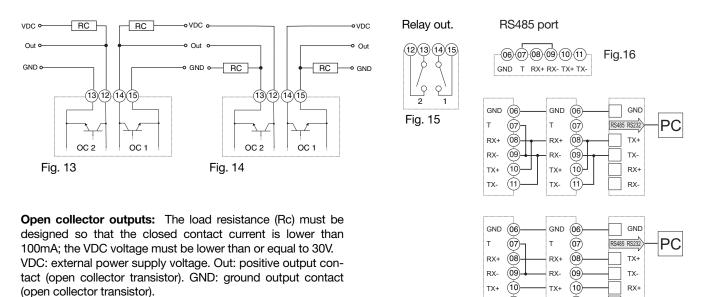
Wiring diagrams

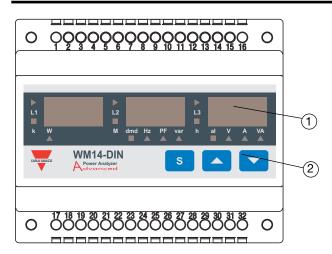
When the CT is connected to earth, a leakage current from 0 to 1.8mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.

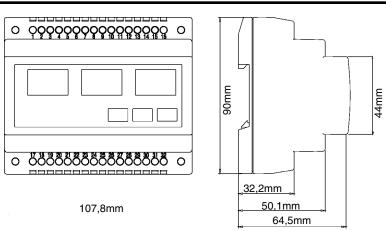


NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.

Wiring diagrams


When the CT is connected to earth, a leakage current from 0 to 1.8mA max is generated, whose value depends on the input impedance values of the instrument, on the type of connection and on the line voltage measured by the instrument.


NOTE: the current inputs can be connected to the mains ONLY by means of current transformers. The direct connection is not allowed.


Output connections

Front Panel Description

Dimensions and Panel Cut-out

1. Display

LED-type with alphanumeric indications to:

TX-

(11)

Fig. 17

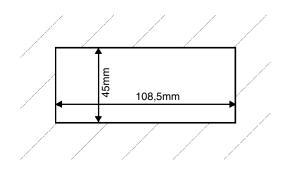
(11)

ТХ-

RX-

- display configuration parameters;
- display all the measured variables.

2. Key-pad


To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;

- Keys to:
- programme values;
- select functions;
- display measuring pages.

